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The burgeoning interest in the field of epigenetics has precipitated
the need to develop approaches to strengthen causal inference
when considering the role of epigenetic mediators of environmental
exposures on disease risk. Epigenetic markers, like any other
molecular biomarker, are vulnerable to confounding and reverse
causation. Here, we present a strategy, based on the well-
established framework of Mendelian randomization, to interrogate
the causal relationships between exposure, DNA methylation and
outcome. The two-step approach first uses a genetic proxy for the
exposure of interest to assess the causal relationship between ex-
posure and methylation. A second step then utilizes a genetic proxy
for DNA methylation to interrogate the causal relationship between
DNA methylation and outcome. The rationale, origins, methodol-
ogy, advantages and limitations of this novel strategy are presented.
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Introduction
There is considerable anticipation of future improve-
ments in disease prevention and treatment following
on from advances in genomics and epigenomics,1,2

although also some scepticism in this regard.3,4 A par-
ticular quality of some genomic methodologies is their
ability to separate causal from non-causal associ-
ations,5–7 with consequent identification of where
interventions will change the course of disease devel-
opment or progression. In this article, we will outline
how methods that increase the strength of causal
inference with respect to environmentally modifi-
able risk factors (Mendelian randomization) can be
adapted to include epigenetic markers,8 an approach
we term ‘two-step epigenetic Mendelian random-
ization’.

Epigenetics, once the domain of developmental
biologists and then cancer researchers, has now per-
meated many areas of clinical medical research,

following the trend set by genomics over the past
decade. Although there still remains a large element
of the unknown surrounding the characteristics and
functional relevance of epigenetic variation, it has sti-
mulated considerable interest. Much of the interest in
epigenetics focuses on the environmentally respon-
sive, mitotically heritable elements that have the abil-
ity to regulate gene expression (Box 1). However, the
plastic nature of epigenetic patterns means that al-
though epigenetic variation may be associated with
phenotypic traits, it can be difficult to disentangle
cause from consequence.

There are few known robust epigenetic marker–
phenotype associations outside of developmental syn-
dromes or cancer.9 Recent literature points to a role
for epigenetic variation in a range of phenotypes
including neurological diseases (Parkinson’s disease,
Alzheimer’s disease, bipolar disorder),10,11 obesity,12,13

diabetic nephropathy,14 osteoarthritis15 and ageing,16
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Box 1 Epigenetic inheritance

The term epigenetics, popularized by Conrad Waddington in the early 1940s [reprinted in this issue of the
IJE],17 has acquired a range of definitions in a variety of contexts but commonly alludes to the study of
‘heritable’ changes in gene function that do not entail changes to the DNA sequence itself.18 As Ho and
Burggren point out, different disciplines interpret ‘inheritance’ in varying ways from the colloquial to the
scientific.18 Thus inheritance can be considered at the cellular,19 population20 or cultural level.21

From the cellular perspective—and on the assumption that mechanistically we are interested in the
propagation of epigenetic marks themselves and not solely the inheritance of associated phenotypic
traits—use of the term ‘heritable’ is ambiguous. It refers to a mitotically heritable state that allows
the perpetuation of epigenetic patterns through a particular cell lineage post-differentiation, as opposed
to the meiotic transmission of epigenetic patterns. There are many illustrations of the ambiguity sur-
rounding the notion of ‘epigenetic inheritance’, a recent paper cautioning that the assumptions of the
Mendelian randomization approach may be violated by epigenetic inheritance being one such example.22

In humans, there are to date no robust examples of environmentally induced epigenetic changes that
are transgenerationally inherited, although there is evidence that this might occur in other species.23–26

To complicate matters further, some epigenetic modifications are perpetuated across cell divisions but are
not directly concerned with the regulation of gene expression.27

Somatic mitotic stability
The replication and transmission of epigenetic patterns during cellular proliferation should be considered as
‘mitotic stability’ as opposed to ‘inheritance’.28 Skinner proposes that this nomenclature be adopted to
remove the current confusion around germ-line-mediated epigenetic inheritance. Mitotic stability embraces
the concept that an environmental exposure might modify the epigenome and this alteration would then be
stably perpetuated down a cell lineage, with the potential to permanently influence somatic cell function.
This provides a plausible mechanism for the developmental origins of disease in later life. Epigenetic sta-
bility, however, is not an absolute prerequisite, as a transient epigenetic change could set in motion a
persistent physiological effect. Rather little is known about the mechanisms by which epigenetic patterns
are inherited, with the exception of the mitotic transmission of DNA methylation which is relatively well
understood.29–31

Germ-line epigenetic inheritance
The erasure of epigenetic patterns during primordial germ cell development and early embryogenesis is
evidence against the postulate that environmentally acquired epigenetic changes, even if acquired in the
germ cell, might persist across multiple generations. However, environmental factors, notably the fungicide
vinclozilin,32 stress responses33 and nutritional challenges,34 have been associated with transgenerational
epigenetic inheritance in animal models, although it is often difficult to dissect evidence of transmission of
epigenetic marks per se from transmission of the exposure itself.35 Evidence for epigenetic inheritance that
is genetically driven exists in humans; MLH1 being an example of a gene harbouring an epigenetic variant
which has been shown to be transmitted transgenerationally.36 Furthermore, RNA molecules are likely
to play a role in the transmission of epigenetic information across generations. RNA-mediated effects
upon phenotype have been observed in invertebrate species37 and may be pertinent to humans.

Transgenerational effects on phenotypic variation
Observations that exposures in the F0 generation can induce phenotypic changes in subsequent generations
have turned to the field of epigenetics to explain such non-Mendelian phenomena.26,38–40 There are a
number of models that could account for the transgenerational transmission of phenotypic variation in
the absence of an inherited genetic factor including the influence of the parents’ genetically determined
phenotypic traits on offspring, cultural transmission or semi-stable epigenetic mechanisms.41 Epigenetic
mechanisms are not predicated on these non-genetic transgenerational phenomena, although epigenetic
mechanisms might play a contributory role. However, as has been pointed out,42,43,44 phenotypic differences
in isogenic organisms (such as drosophila and mice) are not in any meaningful way transgenerationally
transmissible.45 The current flurry of excitement in relation to transgenerational epigenetics influences—
indexed by coverage in popular science books46,47—is not driven by substantive evidence of the quantitative
importance of such inheritance mechanisms in relation to the clearly established Mendelian forms of
inheritance.42
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but in many instances these are correlations without
robust evidence of causality.

Epigenetic biomarkers of disease prediction and
prognosis have also been identified, notably in the
oncology field where peripheral blood cell DNA has
been found to be a sensitive biomarker of disease
risk in ovarian and bladder cancers,55,56 although
these require replication. Epigenetic signatures in
DNA derived from circulating tumour cells in
plasma are also emerging as useful diagnostic and
prognostic tools.57 In these instances, a causal rela-
tionship between epigenetic marker and phenotype
is not a prerequisite for an informative predictive bio-
marker. Indeed, the integration of genomic and epi-
genomic information into disease risk prediction
models alongside conventional clinical information is
becoming a realistic possibility, though examples of
the application of such integrated genomic and epige-
nomic approaches are only just beginning to
emerge.58

The considerable but so far unrealized hopes for the
utility of epigenetic data will become testable as new

technologies that allow accrual of high volumes of
epigenetic data are implemented. Indeed, the ability
to generate such data at feasible cost is somewhat
preceding capacity to control and harness its potential
for real benefit (see Box 2 for an overview of methods
of epigenetic profiling). It is therefore imperative to
develop strategies to facilitate the optimal interpret-
ation of these data. The various strategies that have
been employed to disentangle observations inevitably
complicated by confounding, measurement error and/
or reverse causation can be applied to epigenetic
associations.59

Here, we propose a two-step epigenetic Mendelian
randomization strategy that draws together the prin-
ciples of two established analysis strategies, namely
Mendelian randomization60 and genetical genomics61

(also termed integrative genomics62). This is a two-
step approach: In Step 1, the causal impact of modi-
fiable risk factors on epigenetic signatures is
established. In the second step, the causal nature of
these epigenetic markers on a health-related outcome
is interrogated. We previously referred to this

Box 2 Measuring DNA methylation

An important first step in examining the extent to which DNA methylation may mediate causal effects of
modifiable exposures on disease is to understand how DNA methylation is measured. To reduce DNA methy-
lation to its basic unit, this can be defined as 50methyl cytosine or the addition of a methyl group to a cytosine
base. However, this process does not occur randomly across the genome, it occurs preferentially at cytosine–
guanine dinucleotides (CpG sites), the distribution of which varies hugely across the genome.48 Of particular
relevance to the current paper are the observations that CpG sites cluster in CpG islands, commonly in gene
regulatory regions, and secondly they often display a correlation structure similar to SNP linkage disequilibrium
(LD) structure. Furthermore, although a binary phenomenon at each individual CpG site (each cytosine base
can only be methylated or un-methylated), at the level of a DNA sample, even taken from a single cell type, the
level of methylation quantified will reflect the proportions of DNA template strands with methylation marks,
often represented as a percentage of methylated DNA compared with total ‘input’ DNA. Variation in DNA
methylation may arise due to differences to one or both alleles (known as allele specific methylation), although
most methods to quantify DNA methylation do not detect allelic imbalance.49,50 An understanding of what is
actually being measured is essential for the correct interpretation of DNA methylation data.

The development of genomic technologies for the analysis of genetic variation has been exploited in
epigenomics and has resulted in rapid advances in the methods available to assay DNA methylation.
Measurement can be at the global level (where an ‘overview’ of the methylation status of the genome is
provided by measuring a representative sub-set of sites or regions), at the genome-wide level (site-specific
or region-specific analysis depending on the technology used but with much higher resolution than global
approaches) or in a targeted gene-specific manner (paralleling a SNP candidate gene approach where
genes are defined through a prior discovery phase or biological prioritization). These methods tend to
produce a ratio of methylated : unmethylated DNA which is commonly interpreted as a percentage.
Details of specific methods can be found elsewhere.50–52 The choice of mode of measurement of DNA
methylation is relevant to a two-step epigenetic Mendelian randomization approach. If considering DNA
methylation as an outcome, then many alternatives exist to measure global methylation, e.g. LINE-1, Alu,
Sat2 or LUMA assays,52,53 gene-specific or genome-wide methylation levels. The recent epigenome-wide
association study (EWAS) reporting a profound (and robust) influence of smoking on a single CpG site
of 27 000 sites analysed,54 suggests that localised effects of specific exposures might be expected rather than
generic influences across the genome. However, when considering DNA methylation as an exposure (in
Step 2 of the two-step epigenetic Mendelian randomization approach) a site-specific measure of DNA
methylation is imperative. This is due to the identification of and reliance upon a cis-SNP at the same
locus that can proxy for DNA methylation at that specific site (see Figures 4–6 for illustrative examples).
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approach as ‘genetical epigenomics’,8 by analogy with
genetical genomics, but now consider the more de-
scriptive label we apply to it preferable.

This method can be applied to studies of exposures
in postnatal life—from infancy to adulthood—that
potentially influence later disease risk, and also to
intra-uterine factors that modify later health, within
the developmental origins of health and disease
(DOHaD) framework.

Mendelian randomization
The Mendelian randomization approach is predicated
on the principle that if a genetic variant (e.g. Fat mass
and obesity associated gene, FTO) either alters the
level of, or mirrors the biological effects of, an envir-
onmentally modifiable exposure (e.g. obesity) that
itself alters disease risk (e.g. blood pressure), then
this genetic variant should also be related to disease
risk to the degree predicted by the joint effects of the
genetic variant on the modifiable exposure and of the
modifiable exposure on the outcome. Instrumental
variable methods of analysis63 can be applied in the
Mendelian randomization setting64,65 to produce
quantitative estimates of the magnitude (with confi-
dence intervals) of the causal influence of the modi-
fiable exposure on health outcome. Common genetic
polymorphisms that have a well-characterized bio-
logical function (or are proxies for such variants)
can therefore be utilized to estimate the causal
effect of a suspected environmentally modifiable ex-
posure on disease risk.5,60,65–68 The variants should
not have an association with the disease outcome
except through their link with the modifiable risk
process of interest.

It may seem counterintuitive to study genetic vari-
ants as proxies for environmentally modifiable expos-
ures rather than measure the exposures themselves.
However, there are several crucial advantages of uti-
lizing genetic variants in this manner, which are de-
tailed below.

Confounding
Unlike most environmentally modifiable exposures,
genetic variants are not generally associated with
the wide range of behavioural, social and physiologic-
al factors that can confound epidemiological associ-
ations. Thus, when a genetic variant is used as a
proxy for an environmentally modifiable exposure, it
is unlikely to be confounded in the way that direct
measures of the exposure will be, and this lack of
confounding has been empirically demonstrated in
several data sets.5,69 Furthermore, aside from the ef-
fects of population structure,70 such variants will not
be associated with other genetic variants, except
through LD. Thus, if population stratification is ad-
dressed (through restriction to an ethnically homoge-
neous sample and/or genomic control) only the

minute proportion of the genome in LD with the gen-
etic variant under study will be associated with the
variant under investigation.

Reverse causation
Inferences drawn from observational studies may be
subject to bias due to reverse causation. Disease pro-
cesses could influence levels of exposures such as al-
cohol intake (either through symptoms of disease
influencing desire to drink alcohol or through medical
advice consequent on diagnosis), or intermediate
phenotypes, such as body mass index (BMI), choles-
terol levels and C-reactive protein (CRP). This is of
particular relevance to epigenetic studies where re-
verse causation has the potential to be a major issue
(that is, the trait or disease state itself alters the epi-
genome and not vice versa). However, germ-line gen-
etic variants associated with average alcohol intake or
levels of intermediate phenotypes will not be influ-
enced by the onset of disease.

Temporal variation and measurement error
A genetic variant will reflect long-term levels of ex-
posure, and, if the variant is considered to be a proxy
for such exposure, it will not suffer from the meas-
urement error inherent in phenotypes that have high
levels of variability.66 For example, groups defined by
cholesterol level-related genotype will, over a long
period, experience cumulative differences in choles-
terol levels. For individuals, blood cholesterol is vari-
able over time, and the use of single measures of
cholesterol will underestimate the true strength of as-
sociation between cholesterol and, for instance,
coronary heart disease (CHD). Indeed, use of the
Mendelian randomization approach predicts the
strength of association that is in line with randomized
controlled trial findings of effects of cholesterol low-
ering, when the increasing benefits seen over the rela-
tively short trial period are projected to the
expectation for a lifetime.71

In the Mendelian randomization framework, the as-
sociations of genotype with outcomes are of interest
because they offer strengthened inference about the
action of the environmentally modifiable risk factors
that the genotypes proxy for, rather than what they
say about genetic mechanisms per se. Mendelian ran-
domization studies are aimed at informing strategies
to reduce disease risk through influencing the
non-genetic component of modifiable risk processes.
The Mendelian randomization strategy is being in-
creasingly applied in cardiovascular disease, diabetes,
cancer and infectious disease epidemiology, investi-
gating such issues as the causal influence of alcohol
intake, BMI, CRP, lipid levels and sex hormone bind-
ing globulin on disease risk.72–84 Figure 1 illustrates
this approach using the example of BMI and blood
pressure.84
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Genetical genomics
Analogous to Mendelian randomization, approaches
that have been termed ‘genetical genomics’ have uti-
lized cis (local to methylation site) genetic variation

related to transcription abundance85 to identify which
RNAs are causally related to disease.62,86–88 RNAs,
i.e. nucleic acids that translate genomic sequence in-
formation into proteins (Box 3), are here treated as
the intermediate phenotypes that lie between genetic
variation and disease-related phenotype. The implica-
tion is that modifying levels of these components of
the transcriptome by, for example, pharmacothera-
peutic methods would reduce the risk of disease
(Figure 2). The terminology sometimes used when
this method is applied is that it helps separate
‘causal’ from ‘reactive’ RNAs—the latter being related
to disease risk because disease phenotypes influence
their levels, i.e. through reverse causation.6 This is
clearly illustrated in influential work of Schadt
et al.62,89 As with intermediate phenotypes in the
Mendelian randomization framework, RNA levels
can also be associated with confounding factors and
suffer from reverse causation, being phenotypic rather
than genotypic. In the integrative genetics models,
there is often assessment of a very large number of
transcript abundances, with the ultimate aim of iden-
tifying causal networks from a morass of interrelated
causal and non-causal elements,6 whereas Mendelian
randomization studies have tended to consider a
single modifiable putative risk factor at a time,

Box 3 RNA

Non-coding RNAs
ncRNA—non protein coding RNAs. These are abundant in the genome, with over 3000 recognized human ncRNA
genes. These RNA species are involved in diverse functions including protein biosynthesis and the splicing
of messenger RNAs and have been implicated in disease.91 A nomenclature has been established around
the evolving field of RNA research, the main categories pertinent to epigenetics are outlined briefly below.

miRNA—microRNA genes encode primary transcripts (pri-miRNAs) that are processed into pre-miRNAs
which ultimately form mature miRNAs. These are single-stranded molecules of 19–25 nucleotides in length
that bind to the 30 untranslated region (30UTR) of genes to inhibit transcription. With around 1000 miRNAs
(http://www.mirbase.org) and more than 20 000 genes miRNAs tend to be pleiotropic. miRNAs are them-
selves transmitted between generations and it is postulated that they may play a role in the trans-
generational transmission of epigenetic patterns.92

lncRNA—RNA transcripts of more than 200 nucleotides that do not encode proteins, known as long
non-coding RNAs. Similar to miRNA, this form of ncRNA is involved in regulation of gene expression,
possibly through interaction with enhancer regions as opposed to 30UTRs.93

piRNA—Piwi-interacting RNAs are small ncRNAs of 25–33 nucleotides in length. They function in the
defence of germ-line cells against transposons and are a feature of mammalian genomes.

Other RNA species
mRNA—messenger RNA is transcribed from the DNA sequence and mediates the transfer of genetic infor-
mation from the nucleus to the ribosome. The mRNA fraction of any cell or tissue represents those genes
actively being transcribed at the time of RNA extraction.

tRNA—transfer RNAs are small RNA molecules that are required for translation of mRNA into proteins,
through physically transporting amino acids to the ribosome for assembly into a polypeptide chain.

rRNA–ribosomal RNAs form complexes with ribosomal proteins to form the large structures required for the
physical translation of mRNA into proteins.
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Figure 1 Mendelian randomization: using genetic variants
as instrumental variables to establish whether an exposure
is causally related to a disease or trait. (A) Instrumental
variable (genetic variation) [G] acts as a proxy/instrumental
variable for environmental exposure [E], postulated to
influence disease [Y]. G is independent of unmeasured
confounders or [U]. G only influences Y if E !Y is causal
(red dashed line). (B) The influence of BMI on blood
pressure using the FTO variant as an instrumental variable
is shown as an example. A robust association between
FTO and blood pressure is indicative of a causal association
between BMI and blood pressure.81
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although expansion to multiple phenotypic domains
has been proposed.90

Epigenetic markers as
intermediate/mediating phenotypes
Pathways between modifiable exposures and disease
generally involve mitotically stable changes in regu-
lation of gene expression, which is the focus of epi-
genetic investigations, since modifications in cellular
function are often necessary for the development of
persistently pathological tissue. Although there is no
agreed definition of epigenetics (see, for example, the
seven definitions summarised by Ho and Burggren
201018), a conventional viewpoint considers it to be
potentially measurable, mitotically stable modifica-
tions of DNA other than DNA sequence vari-
ation.94–96 Some popular expositions have focused
on meiotically stable DNA modifications,97,98 perhaps
capitalizing on interest generated by the notion of
inheritance of acquired characteristics and the
echoes of Lamarckianism this entails (Box 1).99

While there is evidence that such inter-generationally
transmissible epigenetic processes exist,100–102 their
importance is unclear and is certainly of less rele-
vance to disease prevention or treatment than
within-generation epigenetic processes. Within gen-
eration here includes in utero influences on the off-
spring epigenome, as the epigenetic marks are not
transmitted, merely the exposure is acting upon
two generations (mother and child) simultaneously
and might be described as an early life exposure with

respect to the offspring.102 The focus of most molecu-
lar epigenomic studies to date has, for pragmatic rea-
sons, been on DNA methylation—the binding of
methyl groups to cytosine bases,12–16,55–58,94–96

though other processes, in particular histone modifi-
cations and non-coding RNAs (see Box 3 for an over-
view of non-coding RNA species), are also
involved.103 In this article, we focus on DNA methy-
lation in relation to common complex disease and
illustrate the potential to extend Mendelian random-
ization approaches to examine the role of DNA
methylation as a mediator on the causal pathway
between modifiable exposures and disease risk.

In molecular epidemiological terms, DNA methyla-
tion can be considered as an intermediate phenotype,
but one that is closely proximal to the germ-line
genome. Epigenetic biomarkers, like many other mo-
lecular biomarkers, are vulnerable to confounding by
the ‘usual’ factors; age, sex, socio-economic position,
diet, smoking, alcohol intake, etc. However, unlike
other biomarkers, epigenetic patterns (explicitly DNA
methylation) have a very close relationship with
underlying genetic architecture. DNA methylation
patterns can correlate closely with local genetic vari-
ants.48,104 Mendelian randomization approaches then
allow these genetic variants to be used to circumvent
the issue of potential confounding of the methylation
patterns. Indeed, methylation changes can be directly
introduced through polymorphic variation, i.e. the ab-
lation or addition of a CpG (methylation) site—this is
discussed in greater detail later.

An important role for DNA methylation in common
complex disease is assumed in many of the reviews
of epigenetic processes in different clinical domains
published in recent times.10,105 The primary hypothesis
is that environmental factors influence the epigenome
which alters the regulation of gene expression and
thus modulates disease risk. This framework is based
upon the assumption that changes to the epigenome
are an intermediate step on the causal pathway to dis-
ease, however, reverse causation and confounding are
often difficult to discount. Indeed, within this field, it
is probably fair to say that currently there is more
speculation than robust and replicable data.

The relationship between genotype
and epigenotype
Recent studies of human brain tissue have high-
lighted that a large proportion of inter-individual
variation in DNA methylation is associated with
common cis-acting genetic variation, i.e. genetic vari-
ation that is local to the DNA methylation site.106,107

This was recently corroborated in an extensive gen-
omic, epigenomic and transcriptomic analysis of
HapMap cell line DNA that reported a predominance
of cis-acting SNPs with respect to DNA methylation
levels, as opposed to more distal trans effects.48,108
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Figure 2 Integrative genomics: using genetic variants as
a causal anchor to demonstrate that modulation of gene
expression levels at a specific locus can influence the
incidence of a disease or trait and to discount the possibility
that reverse causation is at play, i.e. that the disease state is
not acting to alter gene expression levels. (A) Instrumental
variable (genetic variation) [G] acts as a proxy for gene
expression level [R], postulated to influence disease [Y].
G is independent of unmeasured confounder or [U].
G only influences Y if R !Y is causal (red dashed line).
(B) The relationship between SNPs at the 17q21 locus
(ORMDL3 gene), transcript levels of genes in Epstein–Barr
virus-transformed lymphoblastoid cell lines and childhood
asthma is shown as an example.86 The SNPs associated
with childhood asthma were consistently and strongly
associated (P < 10�22) in cis with transcript levels of
ORMDL3, making these SNPs useful instrumental variables
in this setting
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Furthermore, where such genetic determinants of
DNA methylation exist in a heterozygous state, they
may result in allele-specific methylation (ASM),49 i.e.
differences in methylation between two paired al-
leles. Estimates suggest that �20% of heterozygous
SNPs (mainly those located at CpG sites) are asso-
ciated with ASM.104,109 DNA methylation shows re-
gional correlation, although this requires formally
establishing in each experimental- or tissue-specific
setting and should not be an a priori assumption.
It should therefore be feasible to identify cis-SNPs
that correlate with methylation across a specific
region, allowing methylation patterns to be con-
sidered at the haplotype level; a concept promoted
by Bell and colleagues.110 In this way, the use of
genetic variants as a proxy for DNA methylation
levels, in particular the abundance of cis-acting elem-
ents, adds substantially to the feasibility of the two-
step epigenetic Mendelian randomization approach.

Mediation of effects of exposures
on disease outcomes
In epidemiological studies, the identification and
analysis of mediation is often a key focus. For ex-
ample, higher BMI is associated with elevated risk
of CHD, and some of this association may reflect a
causal influence of BMI on blood pressure, which
in turn influences CHD risk. In this situation,
blood pressure would be a partial mediator of the
influence of BMI on CHD, with the important
implication that therapeutically modifying blood
pressure could break this link. Figure 3 illustrates
these processes, which are sometimes referred to as
direct and indirect effects. The figure also highlights
how particular sources of bias and confounding
can occur in such mediation analyses111–114 and the
potential for residual confounding (caused by what
has been referred to as collider bias) and measure-
ment error in the mediator113 to distort interpret-
ations of such data. Below we describe how a two-
step epigenetic Mendelian randomization approach
can be used to examine the role of DNA methylation
as a mediator of the causal pathway between
modifiable environmental exposures and disease
outcomes.

A two-step epigenetic Mendelian
randomization approach
A two-step epigenetic Mendelian randomization
approach first requires a genetic proxy of the modifi-
able exposure which is related to DNA methylation
(the mediator), and secondly, a genetic proxy of
methylation is used to evaluate the relationship
between this methylation mediator and the disease
outcome or trait (Figure 4). Either step could,

however, be used in isolation to interrogate the
causal relationship between exposure and DNA
methylation or the relationship between methylation
and outcome.

E X Y

U1

U2

Figure 3 Mediation: a modifiable causal risk factor [E] for
disease [Y] exerts its causal effect (at least in part) via the
effect of E on X (the mediator) and through the causal
effect of X on Y. U1 and U2 represent all confounders for
the association of E with Y and X with Y, respectively. U1

and U2 can include different characteristics. In simple
multivariable analyses to test this hypothesis it is tempting
to adjust the association of E with Y for U1 and declare that
this is the total causal effect of E on Y and then to adjust
further for X; any resulting attenuation of the U1 adjusted
association of E with Y following further adjustment for X
is considered to represent the amount of the causal effect
of E on Y that is mediated by X. However, by conditioning
on X a pathway between U2 and E is produced and hence
this association (E with Y) is now confounded by U2. In this
situation X is said to be a collider between and E and U2.115

Furthermore, measurement error in X will bias the
assessment of its mediation. Thus, both U1 and U2 require
separate consideration and this can be achieved in the
two-step epigenetic Mendelian randomization framework

Exposure Phenotype

SNP 1

CpG

Exposure Phenotype

SNP 2

CpG

A Step 1

B Step 2

Figure 4 Two-step epigenetic Mendelian randomization:
applying the principle of Mendelian randomization to
DNA methylation as an intermediate phenotype. Genetic
variants can be used as instrumental variables in a two-step
framework to establish whether DNA methylation is on the
causal pathway between exposure and disease. An overview
of the two-step framework of this approach is shown.
(A) First, an SNP is used to proxy for the environmentally
modifiable exposure of interest and (B) secondly, a different
SNP is used to proxy for DNA methylation levels
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Genetic proxies for environmentally modifiable
exposures
Many (but not all) of the genetic proxies, or instru-
mental variables, validated to date in a Mendelian
randomization framework could be applied in a two-
step epigenetic Mendelian randomization approach.
For example, genetic proxies for smoking behav-
iour,115 alcohol consumption,116,118 BMI,81 lipid pro-
files119 or inflammation markers66 have been used in
Mendelian randomization studies and could be
applied to assess whether these environmental factors
impact upon the epigenome. Care is required to
ensure that the instrument chosen does not directly
influence DNA methylation itself, an example being
the use of FTO as an instrument for BMI as the gene
product has been shown to have DNA demethylase
activity.120 The main challenge arises when consider-
ing exactly what measure to use as the outcome, i.e.
‘the epigenome’. As alluded to earlier, we limit our
discussion here to DNA methylation. It has been pos-
tulated that some regions of the epigenome are more
environmentally responsive than others.49 However,
most appraisals of environmentally induced epigenetic
perturbation to date have either involved the assess-
ment of global DNA methylation using assays such as
LINE-1, Alu or Sat2, or have adopted an agnostic
genome-wide approach, with large numbers of mark-
ers across the genome. An EWAS approach can be
applied to interrogate potential associations between
a given environmental exposure and DNA methyla-
tion as a phenotypic outcome.50 Few examples of
this exist, two notable ones being the influence of
smoking54 and age16 on DNA methylation (recog-
nizing that age is not an environmental exposure
per se). Future EWASs in relation to other exposures
will provide additional robust signals (Box 2).

In the absence of an EWAS, when considering
methylation as an outcome where does one look with
respect to a specific exposure? Much focus has been
placed upon CpG-rich regions (or islands) in the regu-
latory regions of genes, primarily based on the ration-
ale that this is the mechanism whereby DNA
methylation regulates gene expression, and partly
driven by the technology and platforms available.
More recently, both promoter and intragenic methyla-
tion have been shown to have different relationships
with transcriptional regulation.121 There is also a
growing recognition that CpG sites more distal to the
promoter might show more variation.122–124 However,
there is no consensus as yet on which variably methy-
lated regions are most vulnerable to environmental in-
fluences, if indeed there is a difference.

As an alternative to a genome-wide appraisal, a can-
didate gene approach can provide a suitable means of
identifying environmentally responsive epigenetic loci.
An example of such is the analysis of the epigenetic
regulation of the glucocorticoid receptor (NR3C1) gene
in human brain tissue from suicide victims who were
exposed to child abuse.125 This human study followed

extensive analysis of this locus in a rodent model
of maternal postnatal care by the same research
group.126,35 In both contexts, the methylation levels
of specific CpG sites within the Nc3r1/NR3C1 gene pro-
moter region were analysed. Using this approach, one
cannot conclude that this is the only stress responsive
region of the methylome; however, the locus would
still be appropriate for use in a two-step epigenetic
Mendelian randomization approach. Indeed, a com-
prehensive analysis of chromosome 18, which har-
bours Nc3r1 in this rodent model, has been
undertaken. This showed that co-ordinated regional
epigenetic changes spanning over 100 kb on this
chromosome are evident in response to maternal care.127

Parallels with candidate genetic association studies
and the contemporary, robust genome-wide associ-
ation study are relevant, where initial candidate
gene studies, although fruitful on occasion, generally
lacked the statistical power required to identify rep-
licable associations in a situation where there was a
high level of multiple statistical testing.128 Similarly, it
is likely that many candidate DNA methylation stu-
dies will not survive wider replication. Whichever ap-
proach is selected, where to search for epigenetic
variation is clearly a fundamental prerequisite to iden-
tifying environmentally induced variation.

Genetic proxies for DNA methylation
In the second step of a two step epigenetic Mendelian
randomization approach a genetic proxy for methyla-
tion levels is required. This may take the form of a
cis-SNP, i.e. a SNP in the vicinity of the CpG site that
correlates with methylation levels. Various terminolo-
gies have been proposed to describe polymorphisms
that influence local methylation propensity including
‘sequence-influenced methylation polymorphism’
(SIMP),104 CpG-SNP,109,130,131 cis-SNP131 and epial-
lele.132 It is possible to locate such potential SNPs or
proxies by interrogating the SNP architecture flanking
the CpG site or differentially methylated region of
interest and assessing the correlation between methy-
lation levels at the site of interest and genotype. This
approach has recently been used to investigate the
observed association between methylation of the
TACSTD2 gene promoter and childhood adiposity,
where a cis-SNP 162bp from the CpG sites assayed
correlated highly with methylation levels and could
thus be used as a proxy12. There will also be instances
where a CpG site is ablated or lost due to the presence
of a polymorphism. Such a methylation-removing or
methylation-introducing SNP might be termed an
mSNP.107,129 However, mSNPs are not ideal instru-
ments for a two-step epigenetic Mendelian randomi-
zation approach as there is a one-to-one relationship
between the SNP and methylation, meaning that it
cannot be discerned whether the SNP is acting
through epigenetic mechanisms or other functional
pathways. mSNPs can be used to proxy for average
methylation over a region, however.

168 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY



It is also useful at this juncture to identify whether
the SNP selected to act as a proxy for methylation
maps to a transcription factor binding site, enhancer
or other motif that may have the potential to intro-
duce pleiotropic effects. It is plausible that a SNP
which correlates highly with a methylation site may
also have functional consequences independent of its
association with local methylation marks.

Instrumental variables analysis applied to
two-step epigenetic Mendelian randomization
studies
We propose the application of an instrumental vari-
ables (IV) analysis to the two-step epigenetic
Mendelian randomization approach outlined in
Figure 4. Thus, taking the scenario shown in Figure
5A, the application of IV analysis to the postulated
link between smoking, altered methylation and car-
diovascular disease is provided as an example. This
example is based upon the recently reported associa-
tion between DNA methylation at a single CpG site at
the F2RL3 locus and smoking54, together with the use
of the CHRN3/5 variant, which is an established
instrumental variant for smoking intensity134. IV ana-
lysis allows the generation of an unbiased estimate of
the modifiable exposure (here smoking) by the

genotype (the instrumental variable, here the
CHRNA3/5 variant134) and then, to use those predicted
values to estimate the association between the expos-
ure (smoking) and the outcome (here methylation of
the F2RL3 locus). What is called a test of endogeneity
in the econometrics literature is then conducted to
evaluate the level of agreement between the regres-
sion slope from the conventional analysis and the
predicted causal association from the IV analysis.65

Agreement between the two estimates suggests that
the observational association is not a seriously biased
or confounded estimate of the causal effect. If the two
estimates are clearly distinct this suggests either the
conventional analysis is producing a confounded or
biased estimate of the causal effect or there is viola-
tion of the assumptions of the IV analysis, as dis-
cussed later. In Step 2 of the epigenetic Mendelian
randomization approach, when considering the pos-
ition of DNA methylation on the causal pathway
between an environmental exposure and disease
(e.g. smoking, methylation, cardiovascular disease),
IV analysis must then be repeated with methylation
as the predictor rather than the outcome (Figure 5B).
For this second step, an instrumental variable is
required that correlates with methylation levels in
the smoking responsive CpG locus (here F2RL3).

E Y

G

U

Smoking CVD

CHRN3/5
SNP

U

X
F2RL3
CpG

E Y

G

U

Smoking CVD

F2RL3
SNP

U

X
F2RL3
CpG

A   Step 1

B Step 2

Figure 5 Two-step epigenetic Mendelian randomization applied to smoking and cardiovascular disease: (A) instrumental
variable [G] acts as a proxy for environmental exposure [E], postulated to influence disease [Y] via altered DNA methy-
lation [X]. G is independent of unmeasured confounder [U]. G only influences X if E!X is causal (red dashed line). This is
shown in the left hand side of Panel A. This is illustrated by considering the influence of smoking on cardiovascular disease
risk using the CHRN3/5 variant as an instrumental variable for smoking intensity, as shown on the right hand side of Panel
A. This variant has been used previously as an instrument to assess the causal relationship between smoking and BMI.133

The CpG site of interest could be the site in F2RL3 recently reported by Breitling et al.54 (B) In a second step, an alternative
proxy, here an SNP in the same gene in which methylation is measured (F2RL3), is used, as shown in the two diagrams in
Panel B to assess the causal relationship between X and Y or F2RL3 methylation and CVD
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This should be a cis variant, i.e. an SNP in the vicinity
of the F2RL3 CpG site. As outlined in the previous sec-
tion, many SNPs that correlate with methylation levels
are found to be cis variants.48,107 Collectively, this two-
step process can provide a more reliable assessment
of the causal pathway between the environmental ex-
posure (smoking), the mediator (DNA methylation)
and the outcome (cardiovascular disease).

The approach can be applied to assess the effect of
in utero exposures, using maternal genotype as a proxy
for maternal exposure in the first step and offspring
genotype as a proxy for methylation in the second
step. An example in this regard with respect to ma-
ternal alcohol exposure and offspring cognition is out-
lined in Figure 6, where altered DNA methylation in
the infant might plausibly mediate some of the effects
of this exposure.

Strengths and weaknesses
Although predicated on the now well-established
Mendelian randomization framework, concrete ex-
amples of the application of the two-step epigenetic
Mendelian randomization approach are required.
A recent report by Terry et al. details support for
gene-specific DNA methylation being associated with
exposures including benzene, air pollution, arsenic, cig-
arette smoking and alcohol drinking.135 These

exposure–methylation associations could be interro-
gated utilizing the first step of a two-step epigenetic
Mendelian randomization approach. It must be recog-
nized, however, that reported associations between en-
vironmental factors and both global and gene-specific
DNA methylation are often modest in size and lack the
robustness of equivalent contemporary genetic associ-
ation studies. For the second step, robust instruments
for DNA methylation, such as the F2RL3 CpG site asso-
ciated with smoking exposure, will be required.54 The
relationship of variably methylated regions with under-
lying DNA sequence requires more detailed interroga-
tion to elicit a greater number of cis-acting variants
robustly associated DNA methylation levels.

Tissue specificity is clearly an important feature of
epigenetic patterns, explaining how over 200 tissue
types can arise from the same genotype. Inherent in
this observation is the assumption that genotype must
only be partially correlated with DNA methylation
patterns—to allow tissue-specific methylation signa-
tures to exist on a background of uniform genotype.
Therefore, genetic proxies for methylation levels may
be tissue specific and will require tissue-specific val-
idation if being used in DNA samples from tissues
other than peripheral blood. Detailed information of
DNA methylation patterns across multiple tissues is
gradually becoming available as initiatives to se-
quence reference methylomes gain momentum. It
will be possible within the foreseeable future to
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Alcohol in 
pregnancy

Offspring
cognition

ADH1B
SNP
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Xo
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Go
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Alcohol in
pregnancy

Offspring
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CpG

A Step 1

B Step 2

Figure 6 Applying a two-step epigenetic Mendelian randomization approach to in utero influences on offspring out-
comes: (A) maternal instrumental variable [Gm] acts as a proxy for environmental influences [Em] on fetal DNA
methylation during pregnancy [Xo] and subsequent offspring outcome [Yo]. Gm only influences Xo if Em!Xo is causal
(red dashed line). The postulated influence of maternal alcohol intake during pregnancy on offspring cognition using
the maternal ADH1B variant as an instrumental variable is shown as an example.116 (B) An additional proxy, which
correlates with methylation at the alcohol responsive CpG site(s), is then applied in a second step. In this instance,
the offspring’s genotype [Go] is used as a proxy for methylation
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assess the relationship between genetic variation and
DNA methylation in a tissue-specific manner using
openly accessible data sources. Limitations include
that these data are often generated on diseased
tissue and that they usually have very little informa-
tion on environmental exposures or other relevant
covariates.

It is recognised that Mendelian randomization has
certain limitations,60 and these apply equally to the
two-step epigenetic Mendelian randomization ap-
proach. These include the need for larger sample
sizes than have generally been used to date in epigen-
etic epidemiology studies to ensure robust findings;
problems introduced by population stratification that
could generate spurious genetic variant—epigenotype
and genetic variant—outcome associations; rein-
troduced confounding through genetic pleiotropy
and linkage disequilibrium and complexities intro-
duced by developmental compensation to genetic per-
turbations. Potential limitations are elaborated on in
Table 1, and approaches to evaluating the contribu-
tion or avoidance of these problems. A strategy to
overcome the important issue of pleiotropy—where a
genetic variant has more than one direct correlate
that would invalidate conclusions based on the as-
sumption of a single pathway—is the use of multiple
genetic instruments (including potentially many com-
binations of independent instruments). In the
Mendelian randomization context, in some cases, it
may be possible to identify two separate genetic vari-
ants, which are not in linkage disequilibrium with
each other, but which both serve as proxies for the
environmentally modifiable risk factor of interest. If
both variants are related to the outcome of interest
and point to the same underlying association, then it
becomes much less plausible that reintroduced con-
founding explains the association, since it would have
to be acting in the same way for these two unlinked
variants. This can be likened to randomized controlled
trials of different blood pressure-lowering agents,
which work through different mechanisms and have
different potential side effects. If the different agents
produce the same reductions in cardiovascular disease
risk, then it is unlikely that this is through
agent-specific (pleiotropic) effects of the drugs;
rather, it points to blood pressure lowering as being
key. The latter is indeed what is in general
observed.137 In the Mendelian randomization setting,
two distinct genetic variants acting as instruments for
higher body fat content have been used to demon-
strate that greater adiposity is related to higher bone
mineral density.138 With the large number of genetic
variants that are being identified in genome-wide
association studies in relation to particular pheno-
types it is possible to generate many independent
combinations of such variants, and from these com-
binations many independent instrumental variable es-
timates of the causal associations between an
environmentally modifiable risk factor and a disease

outcome can be obtained. The independent estimates
will not be plausibly influenced by any common plei-
otropy or LD-induced confounding, and therefore if
they display consistency this provides strong evidence
against the notion that reintroduced confounding is
generating the associations. The same principles can
be applied in two-step epigenetic Mendelian random-
ization studies (Figure 7).

Summary and potential
applications
Two-step epigenetic Mendelian randomization has the
potential to contribute to furthering understanding
of the causal role of DNA methylation in mediating
environmental influences on common complex dis-
ease, overcoming the potential for confounding and
reverse causation. In translational terms, two-step
epigenetic Mendelian randomization has the potential
to help distinguish between intervention targets (truly
causal) and epiphenomena (non-causal) which may,
nevertheless, be informative diagnostic or prognostic
biomarkers.

Exposure Phenotype

G1, G2, G3

CpG

Exposure Phenotype

Ga, Gb, Gc

CpG

A Step 1

B Step 2

Figure 7 Multiple instruments: a potential advantage of
a two-step epigenetic Mendelian randomization approach
is the exploitation of genetic heterogeneity where multiple
instrumental variables can be combined to strengthen
causal inference for a role of DNA methylation in the causal
pathway between exposure and disease. (A) Genetic
heterogeneity might occur when several genes [G1, G2, G3]
are robustly associated with the exposure of interest and
can be used as separate instruments to interrogate the
association of the exposure and DNA methylation. The
influence of multiple lipid-altering SNPs might be one
example.139 Collectively, the combination of lipid-altering
variants can be used to repeatedly assess the causal
relationship between lipid levels and DNA methylation.
(B) A multiple instrument approach is also possible in
step 2 where several uncorrelated cis-SNPs [Ga, Gb, Gc]
might be identified that impact upon DNA methylation at
a particular site or across a particular genomic region.
These could then be used as separate instruments to
interrogate the relationship between methylation and
phenotype
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KEY MESSAGES

� Establishing the causal role of epigenetic variation on the pathway linking exposure to disease is
crucial to the development of epigenetic-based interventions. Approaches are required to strengthen
causal inference.

� Two-step epigenetic Mendelian randomization provides a framework for strengthening causal infer-
ence with regard to epigenetic factors, namely DNA methylation.

� The principles of Mendelian randomization and genetical genomics have been merged to form a
two-step analysis framework, termed two-step epigenetic Mendelian randomization, which first
assesses the causal relationship between exposure and DNA methylation and secondly, between
DNA methylation and outcome.

� Incorporating epigenetic markers into studies of modifiable risk factors and disease outcomes in this
way will help in further understanding of causal pathways to disease.
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